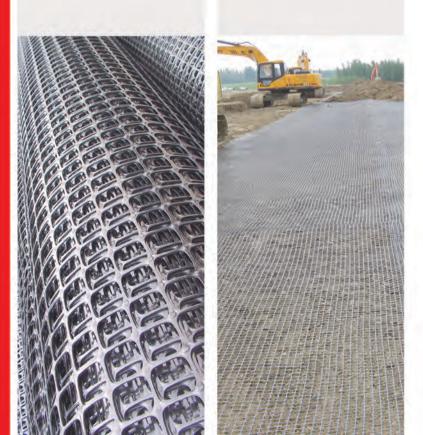


TMP America Inc.

TMP America Corporate Profile

Corporate Profile

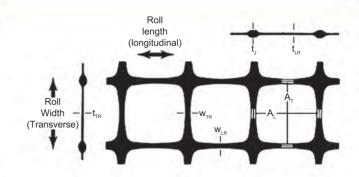

TMP[®] *GEOSYNTHETICS*, established in 1998, has specialized in the production and marketing of geogrids, geotextiles, geocells, and engineering fibers. TMP is the largest geosynthetics manufacturer in China.

TMP America, Inc., established in 2016, is located in north Atlanta and is specialized in the production of Biaxial Geogrids. The company supplies Biaxial Geogrids to North America market with its most advanced geogrids production technology.

TMP takes integrity and innovation as its core development philosophy. With many years of experience, TMP has become one of the world's leading geosynthetics manufacturers and has built its reputation on a commitment to provide high-quality products and efficient services for its global clients. Its North America clients will be better served with the newly established TMP America, Inc.



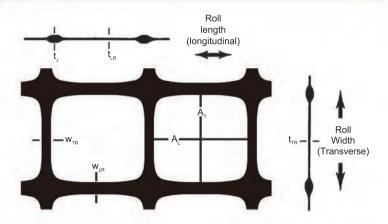
improve long-term performance and reduce cost in road construction



TMP Biaxial Geogrids are single layer regular grid structures formed by the process of extruding, punching, longitudinal stretching and transverse stretching. TMP Biaxial Geogrids have high flexural rigidity and high tensile modulus in relation to the material being reinforced to have high continuity of tensile strength through all ribs and junctions of the grid structures.

Product Specifications

	Product	A_L	$A_{\scriptscriptstyle T}$	W_{LR}	W_{TR}	t _{LR}	t _{TR}	t _J
#	GG1515	36	36	2.6	2.6	1.0	0.8	3.1
#	GG2020	35	35	2.6	2.6	1.5	1.1	3.5
#	GG2525	34	34	2.8	2.8	1.8	1.4	4.2
#	GG3030	34	34	3.0	3.0	2.5	1.5	4.9
#	GG4040	33	33	3.0	3.0	3.4	2.1	5.5
#	GG4545	32	32	3.1	3.1	4.1	2.2	5.6
#	GG5050	30	30	3.1	3.1	4.3	2.5	5.8


^{*} unit = mm

Specifications	Test Method	Unit	GG1515 MD TD	GG2020 MD TD	GG2525 MD TD	GG3030 MD TD	GG4040 MD TD	GG4545 MD TD	GG5050 MD TD
Index Properties			#	#	III	#	#	#	#
Polymer	-	-	PP						
Minimum Carbon Black	ASTM D 4218	%	2	2	2	2	2	2	2
Tensile Strength @ 2% Strain	ASTM D 6637	kN/m	5 5	7 7	9 9	10.5 10.5	14 14	16 16	17.5 17.5
Tensile Strength @ 5% Strain	ASTM D 6637	kN/m	10.5 10.5	14 14	17 17	21 21	28 28	32 32	35 35
Ultimate Tensile Strength	ASTM D 6637	kN/m	15 15	20 20	25 25	30 30	40 40	45 45	50 50
Strain @ Ultimate Strength	ASTM D 6637	%	13 13	13 13	13 13	13 13	13 13	13 13	13 13
Structural Integrity									
Junction Efficiency	GRI GG2	%	93	93	93	93	93	93	93
Flexural Rigidity	ASTM D 7748	mg-cm	250, 000	750,000	1,000,000	2, 000, 000	4, 800, 000	6,000,000	8,000,000
Aperture Stability	COE Method	m-N/deg	0.32	0.50	0.65	0.75	0.98	1.05	1.10
Dimensions									
Roll Width	-	m	3.95	3.95	3.95	3.95	3.95	3.95	3.95
Roll Length	_	m	75	50	50	50	50	50	50

MD = Machine Direction; TD = Transverse Direction.

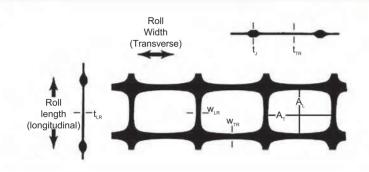
Product Specifications

	Product	A_L	$A_{\scriptscriptstyle T}$	W_{LR}	W_{TR}	t _{LR}	t_{TR}	$t_{_{\rm J}}$	
H	GG2020L	57	57	6.0	6.0	1.2	0.9	3.5	
田	GG3030L	57	57	6.0	6.0	1.9	1.3	5.0	
田	GG4040L	57	57	6.0	6.0	3.0	2.0	6.0	

^{*} unit = mm

Specifications	Test Method	Unit	GG2020L MD TD	GG3030L MD TD	GG4040L MD TD
Index Properties			H	田	Ħ
Polymer	-	-	PP	PP	PP
Minimum Carbon Black	ASTM D 4218	%	2	2	2
Tensile Strength @ 2% Strain	ASTM D 6637	kN/m	7 7	10.5 10.5	14 14
Tensile Strength @ 5% Strain	ASTM D 6637	kN/m	14 14	21 21	28 28
Ultimate Tensile Strength	ASTM D 6637	kN/m	20 20	30 30	40 40
Strain @ Ultimate Strength	ASTM D 6637	%	13 13	13 13	13 13
Structural Integrity					
Junction Efficiency	GRI GG2	%	93	93	93
Dimensions					
Roll Width	-	m	3.95	3.95	3.95
Roll Length	-	m	50	50	50

MD = Machine Direction; TD = Transverse Direction.



Product Specifications

	Product	A_L	A_{T}	W_{LR}	W_{TR}	t _{LR}	t _{TR}	t _J	
H	GG1100	26	34	2.6	2.9	1.0	0.8	2.7	
Ħ	GG1200	26	34	2.7	3.0	1.6	1.1	3.7	

^{*} unit = mm

Specifications	Test Method	Unit	GG1100 MD TD	GG1200 MD TD	
ndex Properties			Ħ	Ħ	
Polymer	-	-	PP	PP	
Minimum Carbon Black	ASTM D 4218	%	2	2	
Tensile Strength @ 2% Strain	ASTM D 6637	kN/m	4.1 6.6	6 9	
Tensile Strength @ 5% Strain	ASTM D 6637	kN/m	8.5 13.4	11.8 19.6	
Ultimate Tensile Strength	ASTM D 6637	kN/m	12.4 19.0	19.2 28.8	
Strain @ Ultimate Strength	ASTM D 6637	%	13 13	13 13	
Structural Integrity					
Junction Efficiency	GRI GG2	%	93	93	
Flexural Rigidity	ASTM D 7748	mg-cm	250,000	750,000	
Aperture Stability	COE Method	m-N/deg	0.32	0.65	
Dimensions					
Roll Width	-	m	3.95	3.95	
Roll Length	-	m	75	50	

MD = Machine Direction; TD = Transverse Direction

TMP Biaxial Geogrids are used to improve the performance of aggregate base course materials supporting both paved and unpaved roadway surfaces. The geogrids provide confinement (lateral stability) of unbounded base courses, thus improving their vertical stress distribution characteristics. Confinement is achieved by the geogrids restraining the lateral and vertical deformation of the aggregate, which is locked into the aperture openings of the product during placement and compaction of the aggregate. The reinforcement action (strength) of the geogrids is generated by the application of vertical stress causing lateral and vertical deformations of both the aggregate and the geogrids.

TMP takes integrity and innovation as its core development philosophy. TMP has become one of the world's leading geosynthetics manufacturers.

TMP America Inc.

2000 Mcfarland 400 Blvd, Alpharetta, GA 30004 Tel: 770-674-4509